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Abstract. In medical imaging, finding landmarks that provide biologically mean-
ingful correspondences is often a challenging and time-consuming manual task.
In this paper we propose a generic and simple algorithm for landmarking non-
cortical brain structures automatically. We use a probabilistic model of the image
intensities based on the deformation of a tissue probability map, learned from a
training set of hand-landmarked images. In this setting, estimating the location of
the landmarks in a new image is equivalent to finding, by likelihood maximiza-
tion, the ”best” deformation from the tissue probability map to the image. The
resulting algorithm is able to handle arbitrary types and numbers of landmarks.
We demonstrate our algorithm on the detection of 3 landmarksof the hippocam-
pus in brain MR images.

1 Introduction

Anatomical landmarks are well-defined points in the anatomythat experts use to estab-
lish biologically meaningful correspondences between structures [1]. Such correspon-
dences are commonly used by registration algorithms, as initialization and/or as con-
straints [2,3,4]. Landmarks also provide a local shape description useful for anatomical
shape comparison [5].

However, locating landmarks on biological structures is a challenging and time-
consuming task, even for experts. This has motivated the development of several meth-
ods for automatic landmarking. Previously proposed methods use either 3D filters to
detect, for example, high curvature points and corners in the image [6], or a geometric
model of the image intensities to detect, for example, the tip of a structure [7,8]. Both
techniques rely on local intensity variations, but some landmarks are not detectable us-
ing only intensity information. This is the case of the head of the hippocampus whose
intensity is similar to the surrounding amygdala. Notice also that these techniques are
designed for the detection of independent landmarks. They cannot integrate information
from the previous detections, although it should be helpfulto know, for example, the
location of the head of the hippocampus to locate its tail.
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by ARO/DAAD19/-02-1-0337, by NIH, ADRC Pilot Project Award, 2005 and by general
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In this paper, we propose a probabilistic approach4 to landmark brain structures such
as the hippocampus, on which one needs to locate the head, thetail and the extremity
of the hippocampal uncus. We identify the location of the landmarks in an image with a
unique deformation of the underlying 3D space. The set of deformations considered in
this paper is a set of Gaussian interpolating splines where the landmarks act as control
points. We then build a probabilistic model for an image, given the landmark locations.
The estimation of the model parameters consists of learninga local tissue probability
map, using a training set of hand-landmarked images. In new images, landmarks are
identified using a gradient ascent algorithm on the likelihood function.

The resulting algorithm is generic and specializes automatically to the structure
or region of interest during the learning of the tissue probability map. Therefore the
algorithm is able to specialize to arbitrary types and numbers of landmarks.

In section 2, we describe the generative model of the image intensities. In section
3, we show how to estimate the parameters of this model, including the photometric
parameters of the tissue types and the local tissue probability map. In section 4, we
show how the likelihood function can be maximized to estimate the position of the
landmarks in a new image. Finally, in section 5, we test the method on the simultaneous
detection of 3 landmarks of the hippocampus.

2 Generative model of the image intensities

In this section, we describe the generative model of the intensities of imagei, X(i). Let
L

∗ = (L∗
1, · · · , L∗

K) andL = (L1, · · · , LK), be two sets ofK landmarks inR3 andφ :
R

3 → R
3 a small deformation such thatφ(L∗) = L. Since many deformations verify

this condition, we restrict the set of deformations to a Gaussian spline interpolation
of the landmarks displacements, see equation (3). We fix a standard configurationL∗,
the center of mass of landmark locations in the training set.Hence finding the position
of the landmarksL is equivalent to estimating the ”best” deformation fromL∗ to L.
By the Bayes’ formula the joint distribution becomesP (X(i), φ) = P (X(i)|φ)P (φ).
We choose a uniform prior so that maximizing the joint distribution is equivalent to
maximizing the conditional distributionP (X(i)|φ).

We make the simplifying assumption that the voxel intensities are independent given
the transformationφ. That is,P (X(i)|φ) =

∏

v∈V P (X
(i)
v = x|φ), with X

(i)
v the

intensity at voxelv in imagei andV the set of voxels in the image. The image intensities
are modeled with a mixture of 6 gaussian distributions, corresponding to the following
tissues: CSF, CSF+GM, GM, GM+WM, WM and skull+blood vessels. We denote by
Zv the discrete random variable representing the tissue type at voxelv. We assume that
the intensityX(i)

v , given the tissue typeZv is independent of the deformation and write
the conditional probability of theith image given the deformation as

P (X(i)|φ) =
∏

v∈V

6
∑

j=1

P (X(i)
v = x|Zv = j)P (Zv = j|φ). (1)

4 In [9,10], probabilistic models of the image intensities have also been proposed to segment
and register brain MRI.
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Fig. 1. To generate a new imageX (i) (rightmost): draw a random segmentation (leftmost) based
on the distribution of the tissue probability map; apply a random deformationφ to find the new
image segmentationZφ(T ) (middle) and assign an intensity chosen with the corresponding Gaus-
sian distribution.

The first term characterizes the photometry of each tissue inthe image, while the second
term encodes the geometry. It gives the probability of observing each tissue type at each
location in the brain. Figure 1 illustrate the generative model.

Let β be the parameters of the transformationφ, the estimation of the landmark
position in a new image iŝL = φ

β̂
(L∗) with β̂ = arg maxβ lnP (X|φβ). We denote

by T = {P (Zt = j), 1 ≤ j ≤ 6}
∀t∈T

the tissue probability map, i.e. the probability of
observing tissuej at each voxel. Algorithm 1 summarizes the algorithm for automatic
landmarking which will be described in detail in the following sections.

Algorithm 1 : Automatic Landmarking

Learning step
GivenN training images withK landmarksLi = (Li,1, · · · , Li,K), 1 ≤ i ≤ N :

1. Identify the standard configuration:L∗ = 1
N

PN

i=1 Li,
2. Learn the photometry parameters:µi,j andσ2

i,j for each tissue typej and imagei,
3. Register the images of the training set:

(a) for each imagei, find the uniqueφβi
, such thatφβi

(L∗) = Li,
(b) for eacht in the probability map, extract the intensitiesx

(i)
φβi

(t) for all i, 1 ≤ i ≤ N ,

4. Estimate the tissue probability map:
for each t in the probability map, estimate the proportions of each tissue in
(x

(1)
φβ1

(t), · · · , x
(N)
φβ1

(t)), using the EM algorithm.

For a new image

1. Learn the photometry parameters:µj andσ2
j for each tissue typej,

2. Estimate the transformation and predict the landmark location:
(a) Maximize the likelihood with respect toβ using a gradient method,
(b) Compute the transformationφβ̂ and the predicted landmark location̂L = φβ̂(L∗).



3 Estimation of the model parameters

In this section, we show how to estimate the parameters of theprobabilistic model.
Since the photometry and the geometry are assumed to be independent in our model,
we can estimate the photometric parameters and the tissue probability map separately.
Let us start with the photometry.

3.1 Learning the photometric parameters

The intensity of an imageX(i) is modeled as a mixture of Gaussian distributions, as-
suming independence of the voxels, as it is commonly done in literature [11]. Thus,

P (X(i)) =
∏

v∈V

6
∑

j=1

gi,j(x
(i)
v )αi,j , with gi,j ∼ N (µi,j , σi,j) and

∑

j

αi,j = 1. (2)

Given the segmentation, it would be straightforward to estimate the parameters of
the model. However, here the segmentation is unknown, also we use the Expectation-
Maximization (EM) algorithm [12] to maximizelnP (X(i)) with respect toµi,j , σ2

i,j ,
andαi,j , 1 ≤ j ≤ 6. In the case of a Gaussian mixture, both the E-step and the M-step
can be written in closed form and convergence to a local maximum of the likelihood
function is guaranteed.

3.2 Learning the tissue probability map

The standard atlas for registration in neuroimaging is thatof Talairach and Tournoux,
[2]. Tissue probability maps have been estimated based on images aligned by linear
transformation to that atlas [13]. In the problem we consider the images are already
manually transformed into Talairach space but we try to reduce the residual variabil-
ity (we note variability of 10mm for the head of the hippocampus [14]). Also we use
the correspondences of the landmarks of the training set to improve the quality of the
alignment of the structure of interest and consequently learn a locally more precise
probability map. The estimation of the tissue probability map is obtained as follows:
first, register the training images so that the landmarks lieat the same location in all the
images and then estimate the proportions of each tissue typeat each location.

Registration of the training set: Since the images have been previously aligned by a
linear transformation, we deal only with small deformations. More specifically we use
a spline interpolationφβ based on the landmark matching constraint.

∀t ∈ R
3, φβ(t) = t +

K
∑

k=1

βk√
2π

3
σ3

k

exp

(

−‖t− L∗
k‖2

2σ2
k

)

, (3)

whereβk ∈ R
3 is the displacement vector at the landmarkL∗

k and σk ∈ R is the
smoothing parameter. This type of deformation has a simple analytical form, easy to



generalize to more landmarks. It also has a simple interpretation and an almost local
support so that computation will be easier. Registering thetraining images consists of
finding the unique transformationφβ that transforms the landmarks of the tissue prob-
ability map to those of the image, i.e.φβ(L∗) = L. The choice of the smoothing
parametersσk is done manually, so that we ensure the invertibility of the deformation.
These parameters could also be learned during the training phase. Onceσk are fixed,
registering one training image is equivalent to solving forβ the linear system given by
the landmark matching constraints. Other deformations could be used to register the im-
ages which in addition to satisfying the landmark matching constraints, either minimize
the bending energy (Thin-Plate Splines) or ensure invertibility (Geodesic Interpolating
Splines) [15], at some computational cost.

Estimation of the probability tissue map: The registration of the training set provides

us a vector of intensities at each locationt ∈ T ,
(

x
(1)
φβ1

(t), . . . , x
(N)
φβN

(t)

)

, wherex(i)
φβi

(t)

is the gray level of the imagei, 1 ≤ i ≤ N , at the locationφβi
(t). Learning the

geometry consists of estimating the proportion of each tissue typej at each location
t of the probability map, based on these observations. Since both the tissue types (we
observe only the gray level) and their distribution are unknown, we need to use once
more the EM-algorithm to estimate the proportions of the mixture. The EM algorithm
maximizes the following quantity with respect toP (Zt = j):

N
∑

i=1

ln

6
∑

j=1

P (Zt = j)
√

2πσ2
i,j

exp



−
(x

(i)
φβi

(t) − µi,j)
2

2σ2
i,j



. (4)

We use the photometric parameters(µi,j , σ
2
i,j) estimated previously on each one of the

images of the training set. Figure 2 shows one sagittal sliceof the tissue probability
map. Notice that the anatomy is sharply described by the tissue probability map in the
vicinity of the landmarks while it is more diffuse at longer distances.

4 Landmark detection on a new image

Consider a new image(xv)v∈V . Since the likelihood of the intensities is a function
of β, the deformation parameters, we look for the deformationφβ that maximizes the
conditional likelihoodl(β). That is,β̂ = argmaxβ l(β) with

l(β) =
∑

v∈V

ln
6

∑

j=1

gj(xv)P (Zφ−1(v) = j). (5)

The estimated landmark location is simply given byL̂ = φ
β̂
(L∗).

However,φ−1
β cannot be expressed in a simple analytic form, so we make the change

of variablesv = φβ(t). The likelihood becomes,

l(β) =
∑

t∈φ
−1

β
(V )

ln

6
∑

j=1

gj(xφβ(t))P (Zt = j)|Jφβ
(t)|, (6)
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Fig. 2. Tissue probability map obtained when the deformation is estimated on three landmarks:
HoH the head of the Hippocampus, HT the hippocampus tail and UA, the posterior apex of the
hippocampal uncus. The slice corresponds to the sagittal section containing HoH, HT. UA is
represented on the same slice although it lies in the next sagittal slice. We represent the 5 main
tissues of the brain (the sixth one is not present in this region of the image). White regions have a
high probability to belong to the corresponding tissue. Therightmost bottom image is an example
of a registered image of the training set.

with |Jφβ
(t)| the absolute value of the determinant of the Jacobian of the change of

variable. We approximate it by computing the quantity on thetissue probability map
supportT instead ofφ−1

β (V ). In addition, since the support of the deformationφβ is
almost local, the computation can be reduced to the points around the landmarks, saving
memory usage and time.

The derivative of the likelihood with respect toβ can be computed exactly. The
likelihood is maximized by simple gradient ascent inR

3K . Conjugate gradient method
did not improve the experimental results.

5 Experiments: landmarking the hippocampus in brain MRI

The training set is composed of 38 T1-weighted MR brain images acquired on a Philips-
Intera 3-Tesla scanner, with resolution 1mm3. Brains were first manually transformed
into standardized Talairach space using Analysis of Functional Neuroimages (AFNI)
to provide a canonical orientation (anterior and posteriorcommissures (AC and PC)
made co-linear) and approximate alignment. All the images have the same size after the
transformation:161× 191× 151 voxels. An expert located the apex of the Head of the
Hippocampus (HoH) and define on the same sagittal slice the Tail of the Hippocampus
(HT) and he located the posterior apex of the hippocampal uncus (UA). (see Figure 2
bottom right)



We apply Algorithm 1 to predict simultaneously the locationof HoH, HT and UA
in the training set and in the testing set, composed of 9 images acquired in the same
experimental setting as the training set and transformed into Talairach space. We exper-
imented with different values ofσ but the results were comparable. We present in more
details the caseσHoH = σHT = σUA = 5.

After learning the model as described in section 2, we estimate the transformation
parametersβ ∈ R

9 for each image independently. We assess the quality of the pre-
diction by computing the Euclidean distance between the true landmarksL and the
estimated position̂L. The hand-landmarking procedure defines HoH and HT so that
they lie on the same sagittal slice. This is enforced in the optimization algorithm by
expressing the constraints onβ. For computational efficiency, we restrict the domain of
computation to the set of voxels in the probability map within 3σ of each landmarks,
since the gradient will be null at further distance of the landmarks. Table 1 presents
the mean error over the images of the training and the testingset. For comparison,

Table 1. Mean prediction error in mm obtained by automatic landmarking for HoH, HT
and UA on the training set (38 images) and on the testing set (9images).

mean error (mm) on the training setmean error (mm) on the testing set
HoH 2.27 (1.58) 2.96 (1.17)
HT 2.49 (1.25) 2.57 (1.20)
UA 2.20 (1.30) 2.78 (1.59)

the specialist’s intra-variability for HoH is 1.22mm(σ = 0.92), while the non-expert
intra-variability on the same images for the same landmark is 3.58mm(σ = 0.98).
The resulting inter-observer variability for HoH is 3.26mm(σ = 0.98). The algorithm
reaches performance comparable to the inter-observers variability and offers for most
of the images a reliable prediction of the landmark position.

Since locating landmarks in the image is aimed at reducing the local variability of
the alignment, we compute the average gray-level across theimages of the testing set
and compare the initial alignment to the alignment after registration, using the automatic
landmarks or the manual landmarks. For this experiment, we use the same registration
technique as in section 3.2. Figure 3 presents the results. The improvement between
(a) and (b) are concentrated around the landmarks. Around HT(top-right cross) the
average location of the tail is more consistent and accuratethan in (a). The head of
the hippocampus (bottom-left cross) is visible in (b) whileit is not in (a). The overall
alignment of the hippocampus is better in (b) than in (a).

6 Conclusion

We have proposed a simple and generic algorithm for automating the detection of land-
marks on anatomical structures of the brain. The algorithm belongs to the class of gen-
erative models using a training set of manually located landmarks to specialize to the
structure or region of interest. It adapts easily to variousnumbers and types of anatom-
ical landmarks. Experimental results on brain MRI for locating three landmarks in the
hippocampus are promising with an error comparable to the variability between land-
markers.



(a) (b) (c)

Fig. 3. Alignment experiment results on the testing set composed of9 images initially aligned in
the Talairach space. (a) represents the initial alignment without using landmarks, (b) represents
the alignment obtained when the registration is made using the landmarks detected automatically,
(c) alignment based on the expert’s landmarks. The crosses represent HoH, HT and the projection
of UA as it lies in the next sagittal slice.
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