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Abstract: The link between Bayesian and variational approaches is well known in the image analysis community in particular in the context of deformable models. However, true generative models and consistent estimation procedures are usually not available

and the current trend is the computation of statistics mainly based on PCA analysis. We advocate in this paper a careful statistical modeling of deformable structures and we propose an effective and consistent estimation algorithm for the various parameters

(geometric and photometric) appearing in the models.

1 Introduction

One primary difficulty in the context of deformable template models
is the initial choice of the template and of various parameters in the
energies underlying the registration process. This problem is of ut-
most important in the context of medical imaging and computational
anatomy where people try to provide statisticals models for anatom-
ical and functional variability, but also in many problems of object
detection and scene interpretation. Building real generative model,
that handle pose variability and yield effective likelihood ratio tests
for various discriminative purposes, is a fundamental issue mainly
unsolved in the context of non-rigid objects.
A first step toward a statistical approach for the estimation of tem-
plates has been proposed by C.A. Glasbey and K.V. Mardia in 2001.
Our goal here is to propose a coherent statistical framework for dense
deformable templates both in terms of the probability model, and in
terms of the effective estimation procedure of the template and of
the deformation covariance structure.

2 The Observation Model

Let (yi)1≤i≤n be the gray level observed data. Each yi is defined on a grid

of pixels Λ ↪→ R
2 where for each s ∈ Λ, xs is the location of pixel s in a

specified domain D ⊂ R
2. The template is a function from R

2 to Rand we

consider the small deformation framework to caracterise the observations: we

assume the existence of an unobserved deformation field z : R
2 → R

2 such

that y(s) = I0(xs − z(xs)) + σε(s) = zI0(s) + σε(s) where ε(s) are

i.i.d N (0, 1), independent of all other variables.

3 The Template and Deformation Model

The template I0 and the deformation z belong to Vp and Vg, 2
RKHS with respective kernels Kp and Kg: Given (pk)1≤k≤kp

and

(gk)1≤k≤kg
) ∃α ∈ R

kp and (β(1), β(2) ∈ R
kg × R

kg such as:

I0(x) = Kpα(x), =
kp
∑

k=1
Kp(x, pk)α(k) ,

zβ(x) = (Kgβ)(x) =
kg
∑

k=1
Kg(x, gk)(β(1)(k), β(2)(k)).

4 Parameters and Likelihood

General model (includes mixtures of deformable templates):
Model parameters: θ = (θτ = (ατ , σ

2
τ , Γ

τ
g))1≤τ≤T where T =

#components,
Weight of the different mixtures: ρ = (ρτ )1≤τ≤T .

Let θτ
g = Γτ

g and θτ
p = (ατ , σ

2
τ ) and θ ∈ Θ an open set.

For each observation yi we consider the pair of unobserved variables
ξi = (βi, τi). The likelihood of the observed data is:

q(y|θ, ρ) =

T
∑

τ=1

∫

q(y|βτ , θp, ρ)q(βτ , θg, ρ)ρ(τ )dβτ

where the density functions are given by a Bayesian model.

5 The Bayesian Model

The generative probabilistic model is given by:
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ρ ∼ νρ

θ = (θ
γ
g , θ

γ
p )1≤γ≤ ∼ ⊗γ=1(νg ⊗ νp) | ρ

γn
1 ∼ ⊗n

i=1ρ | η = (θ, ρ)

βn
1 ∼ ⊗n

i=1N (0, Γ
γi
g )| η, γn

1

yn
1 ∼ ⊗n

i=1N (zβi
Iαi, σ

2
γi
IdΛ) | βn

1 , η, γn
1

with the following prior distributions:
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νg(dΓg) ∝

(

exp(−〈Γ−1
g , Γ0

g〉/2)
1

√

|Γg|

)ag

dΓg, ag > 2kg + 1

νp(dσ2, dα) ∝

(

exp

(

− σ2
0

2σ2

)

1√
σ2

)ap

exp
(

(α − µp)
t(Γp)

−1(α − µp)
)

dσ2dα

νρ(ρ) =





T
∏

τ=1

ρ(τ )





aρ

.

6 Estimation: Theoretical results in the 1 com-

ponent case

Theorem 1 (Existence of the MAP estimator)
For any sample yn

1 , there exists θ̂n ∈ Θ such that

q(θ̂n|yn
1 ) = sup

θ∈Θ
q(θ|yn

1 ) .

Theorem 2 (Consistency) Assume that Θ∗ is non
empty. Then, for any compact set K ⊂ Θ,

lim
n→+∞P ( δ(θ̂n, Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

where δ is any metric compatible with the usual topology on Θ.

Moreover, if we introduce a baseline image Ib : R
2 → R set the

template as Iα = Kpα + Ib , and denote for any R > 0:

(1)

{

ΘR = { θ = (α, σ2, Γ) | α ∈ R
kp, |α| ≤ R, σ2 ∈ R

∗
+, Γ ∈ Σ+

2kg
(R) }

ΘR
∗ = { θ ∈ ΘR | EP (log q(y|θ)) = supθ∈ΘR EP (log q(y|θ)) }

Theorem 3 (Consistency on bounded prototypes)
Assume that dimβ < dimy, that P (dy) = p(y)dy where the
density p is bounded with exponentially decaying tails and
that the observations yn

1 are i.i.d under P . Assume also
that the baseline Ib satisfies |Ib(x)| > a|x| + b for some
positive constant a. Then ΘR∗ 6= ∅ and for any ε > 0

lim
n→∞P (δ(θ̂R

n , ΘR
∗ ) ≥ ε) = 0 ,

where δ is any metric compatible with the topology on ΘR.

7 Estimation with the EM algorithm

A natural approach with unobserved variables: The Em algorithm:

We compute η̂ = arg maxη q(η|yN
1 ). This can be rewritten as:

max
η,ν

[∫

log q(y, u|η)ν(u)µ(du) −
∫

ν(u) log ν(u)µ(du)

]

,

which yields to 2 maximisation steps. We iterate the following 2 steps:
E Step: Compute the posterior law on (βi, γi), i = 1, . . . , n as a
product of the following distributions:

νl,i(β, γ) =
q(yi|β, αγ,l)q(β|Γγ

g,l)ρl(γ)
∑

γ′
∫

q(yi|β′, αγ′,l)q(β′|Γγ′

g,l)ρl(γ
′)dβ′

M Step: ηl+1 = arg maxη Eνl(dξn
1 )(log q(η, βn

1 , γn
1 |yn

1 )).

1 Fast approximation with modes

The M step require the computaion of expectations with respect to
νi,l(β, τ ) which has no simple form.
Solution proposed: Approximation with modes:
νi,l(dβi,τ , τ ) ' δβ∗

i,τ ,τ
where ∀τ :

β∗
i,τ = arg max

β
log q(β|ατ,l, σ

2
τ,l, Γ

τ
g,l, yi) =

arg min
β

{

1

2
βt(Γτ

g,l)
−1β +

1

2σ2
l,τ

|yi − K
β
p ατ,l|2

}

.

And the joint posterior distribution on (βi, τi) is approximated by a
discrete distribution concentrated at the T points β∗

i,τ with weights:

wl(τ ) =
q(yi|β∗

i,τ , ατ,l)q(β∗
i,τ |Γτ

g,l)ρl(τ )
∑

τ ′ q(yi|β∗
i,τ ′, ατ ′,l)q(β∗

i,τ ′|Γτ ′
g,l)ρl(τ

′)
.

2 Using a stochastic version of the EM algorithm

Second solution: coupling SAEM with MCMC procedure:
This yields to the 3 following steps:

• Draw the missing data using a transition proba-
bility of a convergent Markov Chain having the
posterior distribution as stationary distribution:

Simulation step: βl+1 ∼ Πθl
(βl, .).

• Approximate the complete likeli-
hood using the previous simulations:

Stochastic approximation: Ql+1(θ) = Ql(θ) +

∆l[log q(y, βl+1|θ) − Ql(θ)]
where (∆l) is a non increasing sequence with limit 0 of positive
step-size.

• Parameter update in a M-step:
Maximisation step: θl+1 = arg max Ql+1(θ).

8 Experiments: Estimated templates

Training set: 20 images per class for 1 component and 40 for 2 com-
ponents.
Results after 20 EM iterations.

Left: one component prototype. Right: 2 components prototypes.

9 The estimated geometric distribution

To be able to notice the geometrical effets learned through the co-
variance matrix, we compare the effects of one learned deformation
on the corresponding template and on other elements either in the
same class or for an other digit.

Top: Synthetized 2’s with template from second component of the previous re-

sults and proper covariance. Bottom: Same template using covariance matrix

of other 2 component.

Top: Synthetized 3’s with the corresponding template and covairance matrix.

Bottom: Same template using covariance matrix of other one of the compo-

nent of the 2’s
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Evolution of the symetric Kullback distance between the current value of Γg

and the prior center Γ0. Left: 2 components of class 0. Right: 2 components
of class 7

10 In the presence of noise

The stochastic procedure has shown more robustness and accuracy
in the presence of noise. The mode approximation is biaised because
of the high number of local maxima of the likelihood.

Left: prototypes in noisy framework learned with the mode approximation.
Right: Prototypes in noisy framework learned with the stochastic EM algo-
rithm

11 Multi-component case in the stochastic EM

algorithm: Some problems encountered

In this particular framework, the theoretical convergence of the
Markov Chain cannot be numerically reached. To generate the new
simulation of each missing data, we use a Gibbs sampler procedure.
The first iteration of the EM algorithm affect each image in a class
with probablility 1/2 then no change of class occures ; the proba-
bility for an image to be affected to an other class is too small and
generally under the computer precision.
Solutions currently studied:

• Concider a model of mixture of the pevious model and other miss-
ing variables: the deformations of an image and the weight of an
image for each class (βτ , pτ )τ .

Problem: this model is no more exponential, no concergence
has been yet proved and the implementation is more complex.

• Consider an other simulation method based on the Gibbs sampler
for the deformation and on an other law for the class of a given
image. (Theory and algorithm in progress...)
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